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SUMMARY

Coarse structural nested mean models are tools for estimating treatment effects from longitudinal obser-
vational data with time-dependent confounding. There is, however, no guidance on how to specify the
treatment effect model, and model misspecification can lead to bias. We derive a goodness-of-fit test based
on modified over-identification restrictions tests for evaluating a treatment effect model, and show that our
test is doubly robust in the sense that, with a correct treatment effect model, the test has the correct Type I
error if either the treatment initiation model or a nuisance regression outcome model is correctly specified.
In a simulation study, we show that the test has correct Type I error and can detect model misspecification.
We use the test to study how the timing of antiretroviral treatment initiation after HIV infection predicts
the effect of one year of treatment in HIV-positive patients with acute and early infection.

Some key words: Causal inference; Estimating equation; HIV/AIDs; Over-identification restrictions test.

1. INTRODUCTION

In observational studies, there is often time-dependent confounding: some covariates are predictors of
both the treatment and the outcome. These covariates may also be affected by the treatment history. In
such cases, standard regression methods adjusting for the covariate history can lead to bias (Robins et al.,
1992; Robins, 2000; Robins et al., 2000). Coarse structural nested mean models (Robins, 1998) are useful
for handling time-varying confounding, but they depend on correct specification of the treatment effect
model.

In this paper we propose a goodness-of-fit test for correct specification of the treatment effect model.
The key insight is that a correctly specified treatment effect model leads to a larger number of unbiased
estimating equations than parameters, which results in over-identification of the latter. Over-identification
restrictions tests, also called Sargan tests or J -tests (Sargan, 1958; Hansen, 1982), are widely used in
econometrics. The standard over-identification restrictions test, given by the minimized value of the gen-
eralized method of moments (Newey & McFadden, 1994) criterion function, has a χ2 limiting distribution,
with degrees of freedom equal to the number of over-identification restrictions. In most situations, the min-
imum of the generalized method of moments criterion is obtained via a continuous iterative procedure that
updates the parameter estimates until convergence (Hansen et al., 1996). Arellano & Bond (1991) showed
that the test statistic based on one-step estimates other than the optimal generalized method of moments
estimates is not robust and tends to over-reject even in large samples. In the statistics literature, gener-
alized method of moments inference has been used as part of the quadratic inference function approach
developed by Qu et al. (2000) and Lindsay & Qu (2003).

Coarse structural nested mean models result in an infinite number of estimating functions, indexed by
a set of arbitrary functions q. The precision of the estimator depends on the estimating functions (Lok
& DeGruttola, 2012). Generalized method of moments approaches provide optimal combinations of the
parameter-identification estimating functions and the goodness-of-fit estimating functions. However, it
is not clear which estimating functions should be used. Semiparametric efficiency theory allows us to
derive an optimal set of estimating equations whose corresponding z-estimator achieves the semiparametric
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efficiency bound (Robins, 1994). Combining optimal estimating equations with additional goodness-of-fit
estimating equations allows simultaneous estimation and testing, as in the traditional over-identification
approach, but it can unnecessarily increase estimation variability (Lindsay & Qu, 2003). The purpose of
this paper is to introduce a different strategy that separates estimation and testing, so that the estimator
attains optimality under the null model and the test has high power. To achieve this, we obtain parameter
estimates by solving the optimal estimating equations with the number of equations equal to the number
of parameters, rather than by minimizing an objective function. The over-identified restrictions, used only
for testing, can be developed from some parametric specification of alternative models. Simulation studies
show that our test statistic has correct size for large samples and high power in all the scenarios considered.
Another advantage of the over-identification restrictions test is that no bootstrap is needed to compute the
test statistic, which is valuable when working with large samples.

2. COARSE STRUCTURAL NESTED MEAN MODEL ANALYSIS

We assume that n subjects are monitored at discrete times k = 0, . . . , K + 1. Let Yk be the outcome at
time k, and let Lk be a vector of covariates at time k. Let Ak be the treatment indicator, which equals 1
if the subject was on treatment at time k and 0 otherwise. We use overbars to denote a variable’s history;
for example, Āk = {At : t = 0, . . . , k} is the treatment information at times 0, . . . , k. We assume that once
treatment is started, it is never discontinued, so each treatment regime corresponds to a treatment starting
time and vice versa. Let T be the actual treatment starting time, with T = ∞ if the subject never started the
treatment during follow-up. We assume that the subjects constitute an independent sample from a larger
population (Rubin, 1978), and for notational simplicity we drop the subscript i for subjects. Up to § 4 we
shall assume that all subjects are followed until time K + 1. Let Y (m)

k be the outcome at time k, possibly
counterfactual, had the subject started the treatment at time m. We assume that the subject’s observed
outcome Yk is equal to the potential outcome Y (m)

k if m is the actual treatment starting time T ; that is,
Yk = Y (T )

k . We also assume that there is no unmeasured confounding (Robins et al., 1992); that is, for
0 � m � k � K + 1, Y (∞)

k is conditionally independent of Am given L̄m and Ām−1. This assumption holds
if L̄m contains all prognostic factors for Y (∞)

k that affect the treatment decision at time m. Finally, X =
( ĀK , L̄ K , ȲK+1) denotes the full information on a subject. Let P be the probability measure induced by
X and Pn the empirical measure induced by X1, . . . , Xn , and define Pn f (X)= n−1

∑n
i=1 f (Xi ).

Following Lok & DeGruttola (2012), we model the treatment effect as

γ k
m,ψ (l̄m)= E(Y (m)

k − Y (∞)
k | L̄m = l̄m, T = m; ψ) (0 � m � k � K + 1), (1)

where ψ ∈ R
p with p ∈ N fixed. Model (1) compares the average potential outcomes under treatment

starting at time m and treatment never started, among the subgroup of subjects with covariate history
l̄m and T = m. As such, it constitutes a conditional causal effect. In observational studies, the treatment
assignment mechanism is unknown. We model the probability of treatment initiation at time m conditional
on the past history as pθ (m)= pr(Am = 1 | Ām−1 = 0̄, L̄m; θ), where the dimension of θ is finite and fixed.
Let Jtrt(θ)(X) denote the estimating function for θ0. Define Hψ(k)= Yk − γ k

T,ψ (L̄T ). As proved in Robins
et al. (1992),

E{Hψ(k) | L̄m, Ām−1 = 0̄, Am} = E{Y (∞)
k | L̄m, Ām−1 = 0̄, Am} (0 � m � k � K + 1)

and therefore, by the assumption of no unmeasured confounding, E{Hψ(k) | L̄m, Ām−1 = 0̄, Am} =
E{Hψ(k) | L̄m, Ām−1 = 0̄}. For any measurable, bounded function qk

m : L̄m → R
p (m = 0, . . . , K ), let

G(ψ,θ,q)(X)=
K∑

m=0

K+1∑
k=m+1

qk
m(L̄m)

[
Hψ(k)− E{Hψ(k) | L̄m, Ām−1 = 0̄}]{Am − pθ (m)}. (2)

Then E{G(ψ,θ,q)(X)} = E[E{G(ψ,θ,q)(X) | L̄m, Ām}] = 0 (Lok & DeGruttola, 2012). Therefore,
Pn{G(ψ,θ,q)(X)T Jtrt(θ)(X)T}T = 0 are stacked unbiased estimating equations for both the parameter
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ψ and the nuisance parameter θ . For simplicity, we will suppress the dependence of the estimating
functions on X ; for example, PnG(ψ,θ,q) is shorthand for PnG(ψ,θ,q)(X). Sometimes we will also drop the
dependence on the parameters.

To derive the optimal estimating equation, and hence the optimal estimator, we assume that
for m = 0, . . . , K and k, s with m + 1 � k, s � K + 1, cov{H(k), H(s) | L̄m, Ām−1 = 0̄, Am} does not
depend on Am . This is a working assumption only, which allows us to derive a closed-form solution for
the optimal q (Robins, 1994):

⎛
⎜⎝
(qm+1,opt

m )T

...

(q K+1,opt
m )T

⎞
⎟⎠ =

⎡
⎢⎣var

⎧⎪⎨
⎪⎩

⎛
⎜⎝

Hψ(m + 1)
...

Hψ(K + 1)

⎞
⎟⎠

∣∣∣∣∣∣∣
L̄m, Ām−1 = 0̄

⎫⎪⎬
⎪⎭

⎤
⎥⎦

−1

×

⎡
⎢⎣E

⎧⎪⎨
⎪⎩

∂

∂ψT

⎛
⎜⎝

Hψ(m + 1)
...

Hψ(K + 1)

⎞
⎟⎠

∣∣∣∣∣∣∣
L̄m, Ām−1 = 0̄, Am = 1

⎫⎪⎬
⎪⎭

− E

⎧⎪⎨
⎪⎩

∂

∂ψT

⎛
⎜⎝

Hψ(m + 1)
...

Hψ(K + 1)

⎞
⎟⎠

∣∣∣∣∣∣∣
L̄m, Ām = 0̄

⎫⎪⎬
⎪⎭

⎤
⎥⎦ . (3)

Remark 1. The optimal vector qopt depends on the unknown ψ and the true distribution through con-
ditional expectations. Following Lok & DeGruttola (2012), we use a preliminary consistent estimate ψ̂p

to replace ψ in E{Hψ(k) | L̄m, Ām−1 = 0̄} and qopt. Also, we replace the unknown conditional expecta-

tions by estimators under working models, and write Eξ1{Hψp(k) | L̄m, Ām−1 = 0̄} and qk,opt
m,ψp,ξ1,ξ2

to reflect
their dependence on nuisance parameters ξ1, ξ2 and ψp. Denote the estimating functions for ξ1, ξ2 and ψp

by J1(ξ1,ψp), J2(ξ2) and Gp(ψp,ξ2). By construction, the dimension of qk,opt
m is p, so the estimating function

(2) with (3) has the same dimension as ψ . Under certain modelling assumptions and regularity condi-
tions for the estimating functions (see van der Vaart, 2000, § § 5.2 and 5.3), the resulting z-estimator is
consistent and asymptotically normal. Technical details are given in the Supplementary Material. Specif-
ically, γ k

m,ψ must be correctly specified. In contrast, the estimator remains consistent for ψ if either

Eξ1{Hψ(k) | L̄m, Ām−1 = 0̄} or pθ (m) is correctly specified. Thus, the estimator is doubly robust (Robins
& Rotnitzky, 2001; van der Laan & Robins, 2003).

3. GOODNESS-OF-FIT TEST

Misspecification of the treatment effect model causes bias in treatment effect estimation. Here we
develop tests for specification of the treatment effect model based on over-identification restrictions tests.
For a correctly specified model, a new set of unbiased estimating functions which differ from the optimal
ones used for estimation should be close to zero when evaluated at the optimal estimator. This is formalized
in the following theorem.

THEOREM 1 (Goodness-of-fit test). Let the treatment effect model be γ k
m,ψ (l̄m) and let Hψ(k)= Yk −

γ k
T,ψ (l̄T ). Choose a set of functions {q̃k

m(L̄m) ∈ R
ν : 0 � m < k � K + 1}, with ν a finite and fixed number,

which are different from the optimal choice qk,opt
m . Let

G̃(ψ,ψp,ξ,θ) =
K∑

m=0

K+1∑
k=m+1

q̃k
m,ξ2

(L̄m)
[
Hψ(k)− Eξ1{Hψp(k) | L̄m, Ām−1 = 0̄}]{Am − pθ (m)}. (4)

The null hypothesis H0 is that γ k
m(l̄m) is correctly specified and either Eξ1{Hψ(k) | L̄m, Ām−1 = 0̄} or pθ (m)

is correctly specified. Under H0 and all the required regularity conditions for estimating functions in van
der Vaart (2000 § § 5.2 and 5.3), the goodness-of-fit test statistic GOF = n{PnG̃(ψ̂,ψ̂p,ξ̂ ,θ̂ )

}T 	̂−1 PnG̃(ψ̂,ψ̂p,ξ̂ ,θ̂ )
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tends to χ2(ν) in distribution as n → ∞, where 	 is the covariance matrix of 
(ψ0,ψ0,ξ0,θ0), with


= −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
∂

∂ψ
G̃

P
∂

∂ψp
G̃

P
∂

∂ξ1
G̃

0

P
∂

∂θ
G̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
∂

∂ψ
G∗ P

∂

∂ψp
G∗ P

∂

∂ξ1
G∗ 0 P

∂

∂θ
G∗

0 P
∂

∂ψp
Gp 0 P

∂

∂ξ2
Gp 0

0 P
∂

∂ψp
J1 P

∂

∂ξ1
J1 0 0

0 0 0 P
∂

∂ξ2
J2 0

0 0 0 0 P
∂

∂θ
Jtrt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

G∗

Gp

J1

J2

Jtrt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where G∗ is the estimating function (2) with (3), Gp, J1, J2 and Jtrt are as defined in Remark 1, and
	̂ is the estimated variance of {
̂(ψ̂,ψ̂p,ξ̂ ,θ̂ )

(Xi ) : i = 1, . . . , n}, with 
̂ obtained by replacing P in 

with Pn.

We state here the key steps of the proof; the details can be found in the Supplementary Material. We
first establish the asymptotic distribution of n1/2 PnG̃(ψ̂,ψ̂p,ξ̂ ,θ̂ )

. A key step is to linearize n1/2 PnG̃(ψ̂,ψ̂p,ξ̂ ,θ̂ )

as n1/2 Pn
(ψ0,ψ0,ξ0,θ0) for some function 
, and apply the central limit theorem. To do so, we assume that
the functions G̃(ψ,ψp,ξ,θ) form a Donsker class. Using Lemma 19.24 of van der Vaart (2000), we have

n1/2(Pn − P)G̃(ψ̂,ψ̂p,ξ̂ ,θ̂ )
= n1/2(Pn − P)G̃(ψ0,ψ0,ξ0,θ0) + op(1). We can then express the asymptotic linear

representation of G̃(ψ̂,ψ̂p,ξ̂ ,θ̂ )
as 
(ψ0,ψ0,ξ0,θ0), which is a linear combination of G∗, G̃, Gp, J1, J2 and Jtrt,

all evaluated at the truth.
The goodness-of-fit test statistic is doubly robust in the sense that for the χ2 limiting distribution to hold,

we require only that either Eξ1{Hψ(k) | L̄m, Ām−1 = 0̄} or pθ (m) be correctly specified. This property adds
protection against possible misspecification of the nuisance models.

The goodness-of-fit test with an arbitrary q̃ may have low power. We propose the following procedure
for choosing q̃ . We specify two models: the null model γ ∗

ψ and an alternative model γ̃ψ . We can derive
q∗opt and q̃opt as in (3) with γ ∗

ψ and γ̃ψ , respectively. We use q∗opt in the parameter-identification estimating
function (2) and q̃opt in the goodness-of-fit estimating function (4). Our simulation study shows that the
goodness-of-fit test with q̃opt has high power in the scenarios considered.

4. EXTENSION OF GOODNESS-OF-FIT TEST IN THE PRESENCE OF CENSORING

We use inverse probability of censoring weighting (Robins et al., 1995; Hernán et al., 2005) to
accommodate subjects lost to follow-up. Let C p = 0 indicate that a subject remains in the study at
time p. Following Lok & DeGruttola (2012), we assume that censoring is missing at random; that
is, (L̄, Ā) is independent of Ck+1 given L̄k, Āk, C̄k = 0̄. Then pr(Am = 1 | L̄m, Ām−1 = 0̄, C̄m = 0̄)=
pr(Am = 1 | L̄m, Ām−1 = 0̄)= pθ (m). Define the inverse probability of censoring weighted estimating
functions Gc∗ and G̃c using weights W k

m,η = {∏k
p=m+1 pr(C p = 0 | L̄ p−1, Ā p−1, C̄ p−1 = 0̄; η)}−1; see Lok

& DeGruttola (2012). We assume that the censoring model is correctly specified and identified with
estimating functions Jcen(η). Similarly, we denote the inverse probability of censoring weighted esti-
mating function for the preliminary estimator ψ̂p by Gc

p. For the nuisance regression outcome mod-
els, the regression was also weighted. Define the goodness-of-fit test statistic in the presence of
censoring by GOF

c = n{PnG̃c
(ψ̂,ψ̂p,ξ̂ ,θ̂ ,η̂)

}T(	̂c)−1 PnG̃c
(ψ̂,ψ̂p,ξ̂ ,θ̂ ,η̂)

, where 	̂c is the estimated variance of
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{
̂c
(ψ̂,ψ̂p,ξ̂ ,θ̂ ,η̂)

(Xi ) : i = 1, . . . , n}, with


c =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
∂

∂ψ
G̃c

P
∂

∂ψp
G̃c

P
∂

∂ξ1
G̃c

0

P
∂

∂θ
G̃c

P
∂

∂η
G̃c

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P
∂

∂ψ
Gc∗ P

∂

∂ψp
Gc∗ P

∂

∂ξ1
Gc∗ 0 P

∂

∂θ
Gc∗ P

∂

∂η
Gc∗

0 P
∂

∂ψp
Gc

p 0 P
∂

∂ξ2
Gc

p 0 P
∂

∂η
Gc

p

0 P
∂

∂ψp
J1 P

∂

∂ξ1
J1 0 0 P

∂

∂η
J1

0 0 0 P
∂

∂ξ2
J2 0 P

∂

∂η
J2

0 0 0 0 P
∂

∂θ
Jtrt 0

0 0 0 0 0 P
∂

∂η
Jcen

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gc∗

Gc
p

J1

J2

Jtrt

Jcen

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

As proved in the Supplementary Material, subject to regularity conditions, GOFc has an asymptotic χ2

distribution, with degrees of freedom equal to the dimension of G̃c.

5. SIMULATIONS

Our simulation study is based on the HIV data described in § 6. Following the approach described
in a technical report available from the second author, we used an autoregressive model for the time
course of the CD4 count Y (∞)

k under no treatment, which may be more realistic in months k = 6, . . . , 30
than at earlier times given the different behaviour of CD4 counts during the first six months after infec-
tion. Therefore, we simulated data in months 6 to 30. First, in each sample, two groups were simulated:
10% injection drug users and 90% non-injection drug users. The outcome was simulated as log-normal:
log Y (∞)

6 ∼ N (6·0, 0·42) for injection drug users, and N (6·6, 0·52) for non-injection drug users. For
k � 6, Y (∞)

k+1 = −10 + Y (∞)
k + εk+1, where εk ∼ N (0, σ 2

k ), with σk = 52·375 − 1·625k for k = 7, . . . , 19
and σk = 21·5 for k = 20, . . . , 30. Second, T was generated by logit pr(T = m | T � m, L̄m)= −2·4 −
0·42 (injdrug)− 0·0035Y (∞)

m − 0·026m, where injdrug is an indicator of injection drug use. Finally,
Yk = Y (∞)

k + γ k
T (L̄T ). We considered different models for γ k

m . The censoring process was generated by
logit pr(Cm+1 = 1 | C̄m = 1̄, L̄m)= 2 + 3 (injdrug)+ 0·1Y 1/2

m . Under this model, the average proportion
of patients being censored before month 30 is about 42%.

The performance of the test statistics was assessed in terms of Type I error and power. We are interested
in testing H0 : γ k

m,ψ = (ψ1 + ψ2m)(k − m)1(k>m) versus Ha : γ k
m,ψ |=(ψ1 + ψ2m)(k − m)1(k>m). Under

Ha, we specified γ̃ for which the test should have optimal power. Four scenarios were considered. In
scenarios (a) and (b), γ is correctly specified; in scenarios (c) and (d), γ is misspecified. In scenario (c),
γ is nested in γ̃ ; and in scenario (d), γ is not nested in γ̃ .

(a) True: γ k
m,ψ = (25 − 0·7m)(k − m), H0 : γ k

m,ψ = (ψ1 + ψ2m)(k − m), and γ̃ k
m,ψ = (ψ1 + ψ2m +

ψ3m2)(k − m).
(b) True: γ k

m,ψ = (25 − 0·7m)(k − m), H0 : γ k
m,ψ = (ψ1 + ψ2m + ψ3 I (injdrug))(k − m), and γ̃ k

m,ψ =
(ψ1 + ψ2m + ψ3m2)(k − m).

(c) True: γ k
m,ψ = (35 − 1·1m + 0·04m2)(k − m), H0 : γ k

m,ψ = (ψ1 + ψ2m)(k − m), and γ̃ k
m,ψ = (ψ1 +

ψ2m + ψ3m2)(k − m).
(d) True: γ k

m,ψ = (25 − m + 0·03m2)(k − m), H0 : γ k
m,ψ = (ψ1 + ψ2m)(k − m), and γ̃ k

m,ψ = (ψ3 +
ψ4m)(k − m)3/2.

We estimated the size and power by the frequency of rejecting H0 in 1000 simulated datasets. We
considered the following choices of q̃: (i) q̃k

m = 1, a naive choice; (ii) q̃k
m = �̃k

m , which is obtained from



Miscellanea 739

Table 1. Type I error estimates and power estimates (×100) for testing the null model H0 by the proposed
goodness-of-fit test statistic with q̃ = 1, �̃ or q̃opt and by the elaborated model fitting and testing approach

over 1000 simulations under scenarios (a)–(d)

Type I error estimates under scenario (a) Type I error estimates under scenario (b)
GOF EMFT GOF EMFT

n\q̃ 1 �̃k
m q̃opt,k

m 1 �̃k
m q̃opt,k

m

500 5·4 4·4 5·1 4·8 8·1 9·1 10·3 12·2
1000 5·1 5·4 4·8 5·6 5·4 5·4 5·2 5·6
2000 4·7 5·1 4·9 5·4 4·8 5·2 4·9 5·3

Power estimates under scenario (c) Power estimates under scenario (d)
GOF EMFT GOF EMFT

n\q̃ 1 �̃k
m q̃opt,k

m 1 �̃k
m q̃opt,k

m

500 10 20 56 52 13 26 48 25
1000 19 42 74 70 21 49 67 51
2000 41 73 90 90 39 73 88 73

GOF, the proposed goodness-of-fit test; EMFT, elaborated model fitting and testing approach.

formula (3) after replacing γ by γ̃ and the covariance matrix by a working identity matrix; and (iii) q̃k
m =

q̃k,opt
m , which is obtained from formula (3) upon replacing γ by γ̃ . The nuisance models are specified in

the Supplementary Material. In addition to the goodness-of-fit test statistic, we considered an elaborated
model fitting and testing approach, which combines the null model with γ̃ , and tests whether the parameters
corresponding to γ̃ are equal to zero. As can be seen from Table 1, the goodness-of-fit test procedure does
not control Type I error well for scenario (b) with n = 500; however, in scenarios (a) and (b), it controls
Type I error with all choices of q̃ for n = 1000 and n = 2000. This suggests that the χ2 distribution provides
an accurate approximation to the finite-sample behaviour of the goodness-of-fit test statistic for moderate
sample sizes. From scenarios (c) and (d), it can be seen that the goodness-of-fit test procedure with q̃k,opt

m
has the highest power, and as the sample size increases, the power increases, confirming the theoretical
results. The goodness-of-fit test procedure with q̃opt,k

m is comparable to the elaborated model fitting and
testing approach when testing nested models as in scenario (c); however, it shows more power in detecting
nonnested models as in scenario (d), probably because the elaborated model fitting and testing approach
fits a larger model and hence loses power.

6. APPLICATION

We used the proposed test to study how the timing of antiretroviral treatment initiation after HIV infec-
tion predicts the effect of one year of treatment in HIV-positive patients. We analysed data from the Acute
Infection and Early Disease Research Program, which is a multicentre, observational cohort study of HIV-
positive patients diagnosed during acute and early infection (Hecht et al., 2006). Dates of infection were
estimated based on a stepwise algorithm that uses clinical and laboratory data (Smith et al., 2006). We
included patients with CD4 and viral load measured within 12 months of the estimated date of infection,
which resulted in 1696 patients. Let Yk be the patient’s CD4 count at month k after the estimated date of
infection, and let Lk be a vector of covariates including age, gender, race, injection drug use, CD4 count
and viral load. We let m range from 0 to 23 and k from max(12,m + 1) to min(m + 12, 24), to avoid mak-
ing extra modelling assumptions beyond those necessary to estimate the one-year treatment effect γ m+12

m,ψ .
We assumed that treatment can only be initiated at visit times. If Lm was missing at a visit time, we carried
the last observation forward. For intermediate missing outcomes, we imputed Yk by interpolation; 1·6% of
the outcomes were missing just prior to onset of treatment, and in such cases we carried the last observation
forward. The percentage of patients censored before month 24 is about 45·7%.

We started with a simple null model for the treatment effect, H0 : γ k
m,ψ = (ψ1 + ψ2m)(k − m)1(k>m),

and conducted three directed alternative-model tests directed at gender, age and injection drug use, as
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Table 2. Application of our proposed test to the HIV data: the optimal estimator fitting
the null treatment effect model, showing point estimates (with 95% confidence intervals
in parentheses), goodness-of-fit statistics, associated degrees of freedom, and p-values
for the adequacy of the null model, by testing whether gender, age or injection drug use

should be added into the model
ψ̂1 (95% CI) ψ̂2 (95% CI)

24·88 (21·61, 28·15) −0·48 (−1·47, 0·52)

Goodness-of-fit test Statistic DF p-value

Test directed at gender 0·99 1 0·32
Test directed at age 0·80 1 0·37
Test directed at injection drug use 2·93 1 0·09

CI, confidence interval; DF, degrees of freedom.

suggested in the clinical literature. For the test directed at a certain variable Z , we calculated the goodness-
of-fit test statistic with q̃ having the optimal form derived from γ̃ k

m,ψ = (ψ1 + ψ2m + ψ3 Z)(k − m)1(k>m).
The nuisance models are specified in the Supplementary Material. Table 2 shows the results. The p-values
are all greater than 0·05, which suggests that there is no significant evidence for rejection of the null model.
The results indicate a benefit of antiretroviral treatment; for example, starting treatment at the estimated
date of infection would lead to an expected added improvement in CD4 counts of 12ψ̂1 = 299 cells/mm3

after a year of therapy. Delaying treatment initiation may diminish the CD4 count gain associated with one
year of treatment, since ψ̂2 < 0; however, this result is not statistically significant.
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